Visualization of Nerve Fiber Orientations in the Human Optic Chiasm Using Photomicrographic Image Analysis.
نویسندگان
چکیده
PURPOSE Hemidecussation of fibers entering the optic chiasm from the optic nerves is well recognized. The reason why bitemporal hemianopia results from chiasmal compression has not been fully explained. There is still a paucity of data relating to the precise details of the routes that the nerve fibers take through the chiasm and, in particular, where and how nerve fibers cross each other. This information is important to understanding why crossing fibers are selectively damaged as a result of chiasmal compression. METHODS An optic chiasm obtained at postmortem was fixed, stained, and sectioned to allow high-resolution photomicrographs to be taken. The photomicrographs were integrated to allow regions of interest across entire sections to be analyzed for fiber direction and crossing. RESULTS The results confirmed that fibers from the temporal retina pass directly backward in the lateral chiasm to the optic tract, whereas fibers from the nasal retina cross to the contralateral optic tract. Crossings take place in the paracentral regions of the chiasm rather than in the center of the chiasm (where the nerve fibers are traveling mostly in parallel). The paracentral crossing regions are distributed in a largely postero-superior to antero-inferior arrangement. CONCLUSIONS These findings clarify the precise locations and crossing angles of crossing nerve fibers in the chiasm. This information may help explain the clinical observation of junctional scotoma and will provide a much better basis for structural modeling of chiasmal compression which, in turn, will improve our understanding of how and why bitemporal hemianopia occurs.
منابع مشابه
Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Her...
متن کاملHigh-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T
The optic chiasm with its complex fiber micro-structure is a challenge for diffusion tensor models and tractography methods. Likewise, it is an ideal candidate for evaluation of diffusion tensor imaging tractography approaches in resolving inter-regional connectivity because the macroscopic connectivity of the optic chiasm is well known. Here, high-resolution (156 microm in-plane) diffusion ten...
متن کاملThree-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
PURPOSE To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. METHODS Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain ...
متن کاملSegregated hemispheric pathways through the optic chiasm distinguish primates from rodents.
At the optic chiasm retinal fibers either cross the midline, or remain uncrossed. Here we trace hemispheric pathways through the marmoset chiasm and show that fibers from the lateral optic nerve pass directly toward the ipsilateral optic tract without any significant change in fiber order and without approaching the midline, while those from medial regions of the nerve decussate directly. Anter...
متن کاملClinical Applications of Optical Coherence Tomography in Ophthalmology
Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases. Furtherm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 56 11 شماره
صفحات -
تاریخ انتشار 2015